Water Research Overview

Jad Ziolkowska

Associate Professor

Dept. of Geography and Environmental Sustainability

OU Water Day

November, 16th, 2018

Selected water research topics:

- Drought and agriculture (shadow price of water)
- Economic value of weather and environmental monitoring (OK Mesonet)
- Sustainability of water management
- Economics of desalination
- Evaluation of ecosystem services

The University of Oklahoma

Ogallala water levels change, 2011-2013

Сгор	Yield (bu/ac)	Net returns (mi \$)	Shadow price of water (\$/af)	Yield (bu/ac)	Net returns (mi \$)	Shadow price of water (\$/af)
Northern HP						
		2010			2011	
Corn	214.5	89.4	92.02	138.4	53.7	38.46
Cotton	1,111.8	95.8	865.99	667.8	27.5	73.20
Wheat	187.6	-52.8	-170.71	173.1	-32.8	-70.14
Soybeans	55.1	0.38	18.61	34.1	-0.5	-26.37
Sorghum	102.6	-10.3	-166.85	75.0	-7.6	-85.53
Southern HP						
Corn	194.8	3.4	5.13	142.1	3.4	5.01
Cotton	953.7	81.5	66.10	499.7	-228.5	-129.31
Wheat	176.4	-27.6	-90.73	164.4	-16.8	-40.87
Soybeans	35.0	-17.5	-685.17	40.0	-6.4	-520.43
Sorghum	82.1	-6.1	-84.94	60.0	-11.4	-135.54

3

Economic value of weather monitoring with OK Mesonet

Source: Ziolkowska et al. (2017)

mproved	profits,	prevented	losses and	total l	benefits	(economic	value)	of Mesonet	information	in (Oklahoma	in differe	nt scenarios	(Factor I	P = 3.7%).
---------	----------	-----------	------------	---------	----------	-----------	--------	------------	-------------	------	----------	------------	--------------	-----------	----------	----

	Improved profits (\$)			Prevented losses (\$)		Total benefits (\$)			
Year	73%	50%	30%	73%	50%	30%	73%	50%	30%	
2006	550,009	376,719	226,031	(13,526,227)	(9,264,539)	(5,558,723)	14,076,236	9,641,258	5,784,755	
2007	4,463,805	3,057,401	1,834,440	(8,181,958)	(5,604,081)	(3,362,448)	12,645,763	8,661,481	5,196,889	
2008	11,962,332	8,193,378	4,916,027	(1,727,448)	(1,183,183)	(709,910)	13,689,780	9,376,562	5,625,937	
2009	4,363,547	2,988,731	1,793,238	(25,363,031)	(17,371,939)	(10,423,163)	29,726,577	20,360,670	12,216,402	
2010	7,616,872	5,217,036	3,130,222	(17,044,518)	(11,674,327)	(7,004,596)	24,661,390	16,891,363	10,134,818	
2011	-	-	-	(27,466,933)	(18,812,968)	(11, 287, 781)	27,466,933	18,812,968	11,287,781	
2012	3,354,080	2,297,315	1,378,389	(4,496,184)	(3,079,578)	(1,847,747)	7,850,264	5,376,893	3,226,136	
2013	5,566,099	3,812,396	2,287,438	(16,919,757)	(11,588,874)	(6,953,325)	22,485,855	15,401,271	9,240,762	
2014	3,453,969	2,365,732	1,419,439	(27,055,851)	(18,531,405)	(11,118,843)	30,509,820	20,897,137	12,538,282	
Sum	41,330,713	28,308,707	16,985,224	(141,781,905)	(97,110,894)	(58,266,536)	183,112,618	125,419,601	75,251,761	

Ziolkowska (2018)

Q

Drought Effects on Texas economy

Impact Type	Employment (# jobs)	Labor Income (in million \$)	Value Added (in million \$)	Output (in million \$)
Direct Effects	-106,437	-679.8	-2,076.3	-8,284.0
Indirect Effects	-42,305	-1,567.8	-3,197.8	-6,349.2
Induced Effects	-18,152	-784.8	-1,449.7	-2,354.1
Total Effects	-166,895	-3,032.5	-6,723.8	-16,987.3

Ziolkowska (2016)

Figure 3. Losses in added value and labor income in the agricultural sector in Texas.

WTP for ecosystem services in the Rio Grande Basin

Willingness to pay (WTP)	Obs.	Mean	Std.	Min	Max
(\$/year from annual income donation)			Dev.		
Total ecosystem services	74	82.77	117.56	0	600
Fresh water supplies	56	38.64	74.44	0	400
Cultural heritage (hunting, plant collecting)	56	8.60	16.56	0	75
Wildlife habitat	55	46.02	64.43	0	350
Recreational activities (fishing, rafting, etc.)	56	13.96	26.31	0	150

Ziolkowska and Mu (under review)

Sustainability and Environ. Footprint in the RG Basin

Mu and Ziolkowska (2018)

The University of Oklahoma

Fig. 5. Geographic distribution of the future sustainability levels in the Rio Grande Basin (Note: Values are aggregated across 20 global climate models in the Rio Grande Basin; the sustainability indicator is defined as the difference between the per capita ecological footprint and the per capita biocapacity. Negative values show sustainable conditions, while positive values indicate unsustainable conditions).

The University of Oklahoma

Interactive models for desalination

Ziolkowska and Reyes (2016)

Model website with explanation:

http://www.hitechmex.org/US_desal/US_desal.html

Open access model of desalination plants in the US:

http://www.hitechmex.org/US_desal/US_Desal.kmz

The University of Oklahoma

Competition for Water Resources

Experiences and Management Approaches in the US and Europe

Dr. Jad Ziolkowska & Dr. Jeff Peterson

KEY FEATURES

- Provides a national and regional perspective through the use of country specific case study examples
- Includes a comparative analysis between the US and Europe, illustrating experiences in water management from two sides of the Atlantic
- Covers interdisciplinary topics related to water, such as agriculture and energy

International perspective on water scarcity problems and useful management methods and best practices in the US and Europe